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Smoke over the Bitterroot Mountains. 
Photograph courtesy of Philip Higuera.

KEY SECTOR

04. FORESTS AND CLIMATE 
CHANGE IN MONTANA
Alisa A. Wade, Ashley P. Ballantyne, Andrew J. Larson, and W. Matt Jolly

In this chapter, we interpret how past and projected shifts in climate—as 
described in the Climate chapter—may influence Montana forests. It is 
important to note that any potential effects will be spatially and temporally 
variable, depending on current forest conditions, local site characteristics, 
environmental influences, and annual and decadal patterns of climate 
variability, such as the El Niño-Southern Oscillation cycle, which can drive 
regional weather and climate conditions. Additionally, when discussing 
drought in this chapter, we are referring to ecological drought as defined 
in the Drought sidebar of the Climate chapter. The summary of potential 
climate influences on forest resources provided here are, in part, focused 
on assisting managers and policy makers develop management responses. 
Forest managers throughout Montana are key players in maintaining the 
health of our forests and, ultimately, forest managers will need to consider 
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KEY MESSAGES
•	 Increased temperatures will have positive 

or negative effects on individual trees and 
forest-wide processes, depending on local 
site and stand conditions, but impacts from 
increased extreme heat will be negative. 
[high agreement, moderate evidence]

•	 Direct effects of climate change on individual 
trees will be driven by temperature in 
energy-limited forests and moisture in water-
limited forests. [high agreement, moderate 
evidence]

•	 The speed and magnitude of climate change 
may mean that increased forest mortality 
and contractions in forest distributions will 
outpace any gains in forest growth and 
productivity over the long run, leading to 
a net loss of forested area in Montana. 
[medium agreement, limited evidence]

•	 Direct effects of climate change on trees and 
forests, such as warmer, wetter conditions 
improving forest productivity or warmer, 
drier conditions increasing tree mortality, 
will be secondary to the impacts of altered 
forest disturbance regimes, such as changes 
in forest fire behavior and area burned. [high 
agreement, limited evidence]

•	 An increase in fire risk (i.e., probability of 
occurrence)—including an increase in size 
and possible frequency and/or severity 
(i.e., tree mortality)—is expected in the 
coming century as a result of a) prolonged 
fire seasons due to increased temperatures, 
and b) increased fuel loads from past fire 
suppression. [high agreement, robust 
evidence]

•	 Rising temperatures are likely to increase 
bark beetle survival [high agreement, strong 
evidence], but climate-induced changes to 
other insects and forest pathogens are more 
varied and less certain. [medium agreement, 
moderate evidence]

•	 Forest responses to climate change may be 
non-linear and complex due to feedbacks. 
[high agreement, limited evidence]

•	 There may be a reduction in the amount of 
carbon stored in forests. [low agreement, 
limited evidence]
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specific adaptation actions in response to current and potential climate 
changes. Forest managers also have an important role to play in climate 
change mitigation via efforts to increase forest carbon storage. 

BACKGROUND
Forest ownership, communities, and distribution in 
Montana

In Brief

•	 There are approximately 23 million acres (9.3 million ha) of forested land 
in Montana, with the majority publicly owned and in the western part of 
the state.

•	 The three most common forest types in the state are dominated by 
Montana’s most commercially important species: Douglas-fir, lodgepole 
pine, and ponderosa pine.

•	 Forest conditions in Montana are varied, and potential impacts from climate 
change will overlay on existing stresses to forests.

The Montana State Assessment of Forest Resources (MT DNRC 2010) estimates that forested land 
covers 23 million acres (9.3 million ha) in Montana (Figure 4-1). The majority of Montana forestlands 
occur in the northwestern climate division (approximately 50%), followed by the southwestern, central, 
and south central divisions. Additionally, the majority (16.3 million acres [6.6 million ha], 71%) is publicly 
owned, under the jurisdiction of federal and state agencies (Figure 4-2). Tribal ownership accounts for 
5% (1.2 million acres [0.49 million ha]) of forests in Montana. Approximately 5.5 million acres (2.2 million 
ha) of forestland (24%) is privately owned, with the bulk (4.4 million acres [1.8 million ha], 19% state total) 
held by more than 83,000 nonindustrial private landowners, and the remainder managed by private 
industrial forest products companies.
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There are 10 primary forest types—defined 
by the dominant tree species in a given 
area—in Montana as identified and 
quantified in the Montana State Assessment 
of Forest Resources (MT DNRC 2010). The 
three most widespread and commercially 
important tree species and their direct and 
indirect sensitivities to climate change are 
described below.

•	 Douglas-fir (Pseudotsuga 
menziesii var. glauca) forests occur 
in cooler settings, but can tolerate a variety 
of climate conditions. They are found 
predominantly in the northwestern climate 
division (but also in the southwestern and 
central divisions), on approximately 7 million 
acres (2.8 million ha) in Montana (Figure 4-3). 
Douglas-fir trees are moderately tolerant of 
fire and tolerate drought better than many 
other species. Douglas-fir forests are subject 
to damage from western spruce budworm 
and Douglas-fir beetle, as well as several root 
diseases (e.g., Armillaria root disease). 

Figure 4-1. Existing land cover in Montana (Landfire 2012). Gray boundaries delineate climate divisions: 1-northwestern, 
2-southwestern, 3-north central, 4-central, 5-south central, 6-northeastern, 7-southeastern (see Climate chapter). 

Existing Land Cover in Montana
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Figure 4-2. Percent forest ownership in Montana (adapted from MT DNRC 2010). 

Percent Forest Ownership in Montana

•	 Lodgepole pine (Pinus contorta 
var. latifolia) forests occupy approximately 
4.9 million acres (2.0 million ha) in Montana 
(statewide, though primarily in the 
northwestern and southwestern climate 
divisions). Lodgepole pine trees grow on 
moist soils and are highly frost tolerant, 
but are less drought and fire resistant than 
Douglas-fir. Still, lodgepole pine forests are 
well adapted to recolonizing burned areas 
since lodgepole pine trees reach reproductive 
maturity at a young age. Lodgepole pine 
trees are susceptible to mountain pine beetle 
infestation and resulting mortality.

•	 Ponderosa pine (Pinus 
ponderosa) forests are found in drier 
areas of Montana, predominantly west of 
the Continental Divide, although east of 
the Continental Divide ponderosa pine is 
the dominant commercial timber species. 
Ponderosa pine forests occupy approximately 
3 million acres (1.2 million ha) in Montana, 
primarily a) mixed with Douglas-fir trees 
in the northwestern, southwestern, and 
central climate divisions, and b) as a single 
species in the south central and southeastern 
climate divisions. Compared to many other 
conifers, ponderosa pine trees have deep 
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roots, making them more drought tolerant, and thick bark and high crown, making them more 
fire adapted. Like lodgepole pine, ponderosa pine trees are susceptible to mountain pine beetle 
infestation and resulting mortality. 

Figure 4-3. Existing forest cover type in Montana (Landfire 2012). Gray boundaries delineate climate 
divisions (see Figure 2-3).

Existing Forest Cover Type in Montana

Other conifer forest types found in Montana are spruce-fir forest (primarily composed of Engelmann 
spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa), as well as forests dominated by western 
larch (Larix occidentalis), grand fir (Abies grandis), limber pine (Pinus flexilis), and miscellaneous 
western softwoods. An additional forest type is composed of hardwoods, including aspen (Populus 
tremuloides), cottonwood (Populus trichocarpa and P. deltoides), box elder (Acer negundo), bur 
oak (Quercus macrocarpa), green ash (Fraxinus pennsylvanica), willow (Salix spp.), and birch (Betula 
papyrifera). Of these hardwood species, cottonwood is the most abundant; it is concentrated in riparian 
areas of central and eastern Montana. 
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Urban forests also provide important benefits to quality of life in Montana. However, urban forests, 
which include many nonnative species, are not a focus of this chapter. Additionally, we will not focus 
on forest understory species (e.g., shrubs and grasses) despite their importance as wildlife habitat, 
livestock forage, fire fuels, and socio-cultural importance (see Socio-cultural sidebar). Both urban forests 
and the forest understory include a vast number of vegetation species, and consideration of species-
by-species impacts is beyond the scope of this report.

Potential climate impacts to forests

	 In Brief

•	 Forests have evolved, adapted, and transformed in response to natural 
processes, including disturbance and climate shifts, over the millennia. 

•	 Current levels of atmospheric carbon dioxide are at their highest level in 
approximately 3 million years, and projected to increase, which will drive 
climate changes. 

•	 Temperatures in Montana have increased and are projected to continue 
to rise; there has been no significant change in mean annual precipitation 
across Montana, but most models project an increase in mean annual 
precipitation with spring contributions greatest and with slightly reduced 
summer precipitation. The combination of rising summer temperatures, 
potential reductions in snowpack (see Water chapter), and decreased or 
similar summer precipitation will likely make droughts more severe when 
they do occur. The frequency and severity of extreme events (e.g., drought, 
extreme hot days) will be enhanced or diminished depending on annual and 
decadal climate oscillations. 

•	 Individual tree species may prove to be more susceptible to projected 
changes in climate conditions and associated disturbances, but the actual 
response of individual species will be spatially complex and dependent on 
local factors like soils, aspect, water, and nutrient availability.
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•	 There will be direct effects (related to increased temperatures and shifts in 
precipitation) and indirect effects (changes in disturbance regimes as a result 
of the direct effects) on forests from climate change. 

•	 Shifts in temperature and precipitation can have both positive and negative 
direct effects on forest establishment and regeneration, growth and 
productivity, and mortality. Overall, net impacts are likely to be negative, 
particularly in water-limited areas.

•	 Indirect effects from climate change on forest disturbance regimes will likely 
have the greatest impacts on forest ecosystems, and will complicate patterns 
of direct effects. Key indirect effects from climate change are likely increases in 
fire and insect-caused mortality.

•	 Climate change will directly alter the range of forests with range expansion in 
some regions and range contractions in other regions. Indirect climate change 
impacts, such as drought or beetle-induced mortality, will also constrain forest 
ranges.

•	 Climate-driven impacts to forest ecosystems may be enhanced or reduced 
by changes in human land use or management at the forest-stand scale. 
Forest stand and local site conditions will also greatly influence patterns of 
climate-driven impacts.

Change is the norm for forests, and over millennia Montana’s forests have transformed and adapted 
as a result of variations in climate, disturbance, and other natural processes (Whitlock 1993; Brunelle 
et al. 2005; Power et al. 2011). However, current levels of atmospheric CO2 are higher than those in the 
last 3 million years (Zhang et al. 2013), and these levels are likely to drive changes to climate (Solomon 
et al. 2009). Although the magnitude of potential climate change may be comparable to variability 
experienced in the past, the rate of that change is anticipated to be significantly greater (Diffenbaugh 
and Field 2013), with substantial implications for Montana’s forests. Montana’s forests will be affected by 
both direct and indirect effects of climate change. Direct effects are impacts to trees that arise directly 
in response to changes in temperature and precipitation; indirect effects are secondary impacts, such 
as increased number of fires associated with warming temperatures, which then affect trees and forests. 
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In the face of changing climate, forest managers can best maintain stable forest health and product 
yield by understanding past trends and planning for a range of climate scenarios. The assessments in 
this chapter are based on the climate trends for which we had sufficient data and climate projections 
that represent plausible future scenarios, as described in the Climate chapter of this assessment (see 
Water chapter for snowpack trends and projections) and summarized in Table 4-1.

Table 4-1. Summary of climate metrics and related direct and indirect effects on forests.
Climate Metric— 
Trend and future scenario

Potential direct effects Potential indirect 
effects

Atmospheric CO2 concentrations 
have increased; projected to increase 
leading to future warming  

Positive: Increased fecundity, 
photosynthesis, vegetation water use 
efficiency, and productivity in some 
species and locations

Average temperatures  
have increased with greatest warming 
in spring; projected to increase with 
greatest warming in summer and winter 
and in the southeast  

Positive: Increased productivity, 
particularly at higher elevations and 
cooler areas

Negative: Increased plant respiration, 
evaporation and transpiration; 
reduced productivity in areas with 
already high temperatures

Positive: Increased soil 
organic matter from 
increased productivity in 
some areas; increased 
nitrogen cycling

Negative: Decreased 
soil organic matter from 
increased decomposition 
rates; increased soil acidity; 
reduced soil (and forest) 
carbon storage

Maximum temperatures  
have increased with greatest warming 
in spring; projected to increase with 
greatest warming in summer and winter 
and in the southeast

Negative: Increased heat stress, 
reduced growth and productivity, and 
increased mortality

 

Negative: Increased fire risk

Days above 90°F (32°C) 
are projected to increase, with greatest 
increases in the northeast and south

Negative: Increased heat stress, 
reduced growth and productivity, and 
increased mortality

Negative: Increased fire risk

Minimum temperatures 
have increased most in winter and 
spring; projected to increase, with 
greatest increases in January and  
in the southeast  

Positive: Longer (or at least earlier) 
growing season; reduced winter 
mortality

Negative: Lower and shorter duration 
snowpack and shift from snow to 
rain-dominant precipitation regimes 
resulting in less water available in 
summer

Negative: Increased 
potential for pathogen  
and insect survival

Frost-free days 
are projected to increase,  
particularly in the west

Positive: Longer (or at least earlier) 
growing season; increased potential 
for regeneration success; reduced 
winter mortality

Negative: Increased 
potential for pathogen  
and insect survival
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Since 1950, statewide temperatures have shown an upward trend. Although differing somewhat 
spatially and seasonally, the warming trend is seen across all temperature variables, including annual 
average, maximum, and minimum temperatures. Similarly, all climate models used in this assessment 
agree that the average annual temperature in Montana will increase over the next century. 

An average statewide increase of 4.5-6.0°F (2.5-3.3°C) is projected for the mid-century and an overall 
increase of 5.6-9.8°F (3.1-5.4°C) is projected for the end of the century (see Climate chapter for a 
description of the emission scenarios used to obtain these values). Maximum monthly temperatures 
are projected to increase, as are extreme heat days (days with temperatures >90°F [32°C]), monthly 
minimum temperatures, frost-free days, and accumulated growing degree-days.

Table 4-1. Continued.
Climate Metric— 
Trend and future scenario

Potential direct effects Potential indirect 
effects

Growing degree-days 
are projected to increase,  
particularly in the southeast

Positive: Increased opportunities 
for establishment and regeneration; 
increased productivity

Negative: Increased 
potential for pathogen  
and insect survival

Average precipitation 
has decreased in winter, but no 
significant change in annual mean 
precipitation potentially because 
of very slight increases in spring 
and fall precipitation; precipitation 
is projected to increase across 
Montana, primarily in spring; slight 
decrease in summer precipitation; 
variability of precipitation year-to-
year projected to increase

Positive: Increased water availability 
in spring during critical establishment 
period

Negative: Combined with less 
available water from reduced and 
shortened snowpack, drier summers 
could reduce or shift growing season

Negative: Increased fire risk

Number of consecutive dry days 
shows little projected change, 
however, increased variability in 
precipitation suggests potential for 
more severe droughts, particularly 
in connection with climate 
oscillations

Negative: Reduced establishment, 
productivity; increased mortality if 
increased severity of dry spells

Positive: Reduced 
disturbance from fungi

Negative: Increased fire risk; 
increased susceptibility to 
pathogens and insects

Snowpack  
has declined substantially;  
projected to continue to decrease

Negative: Less available water in 
summer and potential for increased 
water stress at same time as highest 
temperatures

Negative: Increased fire risk; 
warmer and drier soils and 
reduced mycorrhizal activity 
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Changes in precipitation (described in the Climate chapter) are more varied and uncertain. In general, 
there has been a slight but statistically significant trend of decreasing winter precipitation across 
the state, averaging -0.14 inches/decade (-0.36 cm/decade) since 1950. Projected future shifts in 
precipitation are varied, with not all models agreeing on whether precipitation will increase or decrease 
in Montana. The majority of models suggest a slight increase in total average annual precipitation 
across the state, largely occurring in spring, particularly in the northwest. The models show less 
agreement regarding summer precipitation patterns, though a slight majority of models suggest that 
there may be very small decreases in summer precipitation, particularly in the southeast. 

Given these trends and projections for temperature and precipitation, for the remainder of this chapter 
we consider the impacts of continued warming to Montana forests. In particular, we focus on increasing 
maximum temperatures in summer and increasing minimum temperatures throughout the winter, with 
greatest temperature increases in the southern and eastern areas of Montana. We assume a scenario 
of slightly wetter years on average, with spring precipitation increasing most in the north and western 
areas, although we assume summers become slightly drier.

Drought has a major impact on forests. An important predictor of future ecosystem drought (defined 
as ecological drought in the Water chapter) susceptibility is the net balance of water gained through 
precipitation and water lost through evapotranspiration (the combined effect of water evaporation 
and the transpiration of water by plants). Predicting how increases in temperature and atmospheric 
CO2 may shift evapotranspiration is extremely challenging, especially at regional scales such as 
Montana. However, it is expected that—given the combination of changes in precipitation variability, 
changed snowpack, and rising temperatures—future droughts will be more severe when they do occur. 
Undoubtedly, Montanans will continue to experience periodic drought, particularly in connection with 
climate oscillations (or equivalently, teleconnections, as described in the Climate chapter) (Trenberth et 
al. 2014). Thus, we discuss the implications of more severe drought, particularly during dry periods that 
may amplify drought effects, although we do not assume a change in frequency or duration of drought.

It is important to note that current forest conditions will largely determine the potential impacts from 
current and future climate change. Forest conditions vary across land ownership types, and many 
Montana forests are under stress due in part to past forest management practices. For example, fire 
suppression practices on some state and federal lands have led to denser forests, which are more 
susceptible to fire and stressed by competition and crowding from other trees. Further, harvest 
practices have shifted the genetic makeup of some forests, potentially reducing their resilience to 
climate change (see Genetics sidebar). 
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A note on species-level effects 
We do not detail potential responses of individual tree species to climate shifts in this assessment; we 
instead direct the reader to Chapter 6 in the Northern Region Assessment Program report (Keane et 
al. forthcoming). That report reviews tree genetics, species distribution, potential adaptive strategies, 
and susceptibility to drought and disturbance from fire and insects. While the literature is inconsistent 
about the susceptibility of certain species to direct and indirect impacts of climate change, the relative 
susceptibility of tree species to drought, fire, and insect/disease has been assessed based on expert 
opinion (Table 4.2). Species responses will strongly depend on the magnitude of climate change, water 
availability, management practices, and local conditions.

Table 4-2. Generalized susceptibility of common Montana tree species to drought, fire, and 
insects and pathogens or disease, rated low to high (mod=moderate) per detailed species 
climate vulnerability assessment by Keane et al. (forthcoming).
Species Drought Fire Insect/ Disease
Alpine larch Low High Low

Aspen Low-Mod High Moderate

Cottonwood Low-Mod Moderate Low-Mod

Douglas-fir Low-Mod Low-Mod Moderate

Engelmann spruce Low-Mod Mod-High Low-Mod

Grand fir Mod-High Mod-High Mod-High

Limber pine Low Mod-High Mod-High

Lodgepole pine Moderate Moderate Mod-High

Ponderosa pine Low-Mod Low Moderate

Subalpine fir Low-Mod High Moderate

Western larch Mod-High Low Low-Mod

Western white pine Moderate Low Mod-High

Whitebark pine Mod-High Moderate Mod-High
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DIRECT EFFECTS OF CLIMATE 
CHANGE ON FORESTS

Key Messages

•	 Increased temperatures will have positive or negative effects on individual 
trees and forest-wide processes, depending on local site and stand 
conditions. In relatively cool and moist areas, increased temperatures can 
improve reproduction and establishment, lengthen the growing season, 
and increase forest growth and productivity. Alternatively, in areas that are 
already warm or projected to see large temperature increases, warming is 
likely to decrease growth and increase heat- and drought-related mortality. 
[high agreement, moderate evidence]

•	 Direct effects of climate change on individual trees will be driven by 
temperature in energy-limited forests and moisture in water-limited 
forests. Increased temperatures and water availability could benefit forest 
regeneration and growth, particularly in higher-elevation forests in the 
northern and western parts of the state. Alternatively, decreased water 
availability, such as in Montana’s southeast, or south-facing slopes, will likely 
increase tree mortality. [high agreement, moderate evidence]

•	 The speed and magnitude of climate change may mean that increased 
forest mortality and contractions in forest distributions will outpace any 
gains in forest growth and productivity over the long run, leading to a 
net loss of forested area in Montana. However, range shift responses will 
be highly dependent on species and region. [medium agreement, limited 
evidence]



The direct effects of climate change on forests include increased temperatures and shifts in 
precipitation that together can alter humidity, soil moisture, and water stress. These effects result in 
short-term and long-term impacts to tree establishment, growth and productivity, and mortality. In 
addition, elevated CO2 levels may influence forest growth, productivity, and water use. 

Direct effects can be beneficial or detrimental to forest growth and survival. Each tree species will 
respond differently to climate variation depending on its specific physiological tolerances. Direct effects 
overlie existing forest conditions arising from past and future human land-use activities (Moritz and 
Agudo 2013). Thus, net impacts, whether positive or negative, may be difficult to estimate and will vary 
substantially across Montana.

Forest patterns and conditions depend on the life cycles of individual trees and forest-wide processes. 
In the remainder of this section, we review how different aspects of climate may influence three primary 
life-cycle stages or forest processes: seedling establishment and forest regeneration; tree growth and 
forest productivity; and tree mortality and forest die-off (findings summarized in Table 4-3). Life-cycle 
stages and forest processes may occur at different temporal and spatial scales, but are related and 
we discuss each in turn. We close the section with a discussion of changes in species distribution that 
might be expected from the direct effects of climate change. 

 
Bitterroot Range.  
Photograph courtesy of Rick and Susie Graetz, University of Montana.
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Table 4-3. Summary of potential climate-related direct effects to forests.
Direct effect Possible impacts Projected net effect
Establishment and 
regeneration

Positive: Higher CO2 

concentrations and temperatures 
may lead to increased tree 
fecundity 

Negative: Higher temperatures 
and reduced water availability 
could reduce seedling survival

Possible positive or negative effects are 
superimposed on climate oscillations, 
such as the Pacific Decadal Oscillation, 
which can produce decades of cooler 
and wetter conditions that may be 
more favorable for establishment and 
regeneration

Growth and 
productivity

Positive: Increased vegetation 
water use and increased growth 
and productivity as a result of 
longer growing season

Negative: Reduced growth and 
productivity in water limited areas

Possible increased growth and 
productivity concurrent with climate 
oscillations that increase water 
availability, particularly at higher 
elevations and where stand density is 
low; extreme high temperatures would 
have net negative impact, regardless of 
water availability

Mortality Positive: Few opportunities for 
reduced direct climate effects 
on mortality but possibility for 
reduced mortality from indirect 
effects

Negative: Increased acute 
and background mortality 
from increased temperatures 
and indirectly from increased 
disturbance

Increased mortality, although may be 
driven by indirect effects; patterns of 
mortality will be dependent on initial 
stand and local site conditions, but 
more arid regions more susceptible

Range shifts and forest 
distribution

Positive: Potential range 
expansion with warmer 
temperatures and sufficient 
moisture

Negative: Potential range 
contraction where temperature 
is too high or in water-limited 
locations

Possible faster range contraction 
compared to expansion, with net range 
reduction particularly in drier areas; 
no clear direction of elevational shifts; 
responses will be highly species and 
location dependent
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Establishment and 
regeneration
Although tree recruitment—the process 
of a seedling becoming established and 
surviving into adulthood—is affected by 
many factors, the process is strongly tied 
to temperature and water availability 
(Ibáñez et al. 2007). Overall, studies are 
inconclusive as to net impacts of changing 
atmospheric chemistry and climate on 
seedling establishment and growth. Given 
the climate projections of increased winter 
and spring precipitation, but drier summers, 
predicted uncertainties of seedling 
regeneration are uncertain.

Climate conditions determine the 
window of time for successful seedling 
establishment (Ibáñez et al. 2007). Warmer 
conditions combined with wetter winters 
and springs may lengthen the window for 
seedling establishment in high-elevation 
forests, but may not change significantly 
in lower elevation forests (though it may 
shift earlier) (Keane et al. forthcoming). 
However, even with a lengthened window 
for establishment, warming temperatures 
alone may cause seedling mortality and 
failed regeneration as a result of seasonal 
mismatches in the timing of flowering 
and seed production (Cayan et al. 2010; 
Williams et al. 2013). In the short term, 
warmer temperatures but drier summers 
may increase forest regeneration due to a) 
increased tree flowering and recruitment, 
and b) drought-related reductions in canopy 
cover speeding sapling growth (Galiano et 
al. 2013; Ibáñez and McCarthy-Neumann 
2014; Clark et al. 2016). Additionally, 

higher CO2 levels have been shown to 
increase fertility and seed and pollen 
production in some trees (Ladeau and 
Clark 2006). However, in the long term, 
more severe drought is likely to reduce 
tree establishment by reducing seed 
germination, as well as increasing mortality 
of seedlings and saplings (Kolb and 
Robberecht 1996; Chmura et al. 2011). 

Many responses may be species-specific, 
for example ponderosa pine seedlings 
are sensitive to temperature, lodgepole 
pine seedlings are sensitive to moisture 
fluctuations (Petrie et al. 2016). Ultimately, in 
forests not otherwise limited by energy or 
nutrients variability in moisture availability 
with natural and climate oscillations may 
drive establishment success between years 
(League and Veblen 2006), with indirect 
disturbance effects (e.g., fires, landslides, 
insect outbreaks, and pathogen attacks) 
greatly affecting long-term recruitment 
success (Clark et al. 2016). 

Growth and productivity
Warming temperatures, increased 
atmospheric CO2 , and longer growing 
seasons provide opportunities for increased 
photosynthesis, thereby improving forest 
growth and productivity (Ehleringer and 
Cerling 1995; Joyce and Birdsey 1995; 
Waring and Running 2007; NPS 2010). 
However, these same changes can also 
reduce forest productivity, particularly in 
water-limited systems. Thus, net forest 
response is uncertain, but likely negative 
under extreme temperature increases. 
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Forest productivity will increase up to some 
optimal temperature and then begin to 
decline if temperatures continue to rise. This 
decrease results because plant respiration also 
increases with temperature, and some of the 
photosynthetic gains (that lead to increased 
productivity) are lost through a) growth and 
maintenance respiration (Ryan et al. 1995), or b) 
seasonal differences between photosynthetic 
gains in the spring and increased respiration 
in the fall. These tradeoffs can result in no 
net increase in productivity (Piao et al. 2008). 
Additionally, extremely high temperatures can 
lead directly to increased water stress because 
of drier soils. The temperature threshold at 
which declines would occur is complicated by 
the fact that elevated CO2 levels may increase 
water-use efficiency in plants (Waring and 
Running 2007) and thereby lower plant water 
stress (Franks et al. 2013). 

Although CO2 fertilization has likely increased 
forest growth at a global scale (McMahon et 
al. 2010), this increase may be evident in only 
about 20% of forests, with the remaining 80% 
unable to capitalize on benefits of higher 
atmospheric CO2 because of water or nutrient 
limitations (Gedalof and Berg 2010). A recent 
study suggests that Montana forests will 
likely show substantially lower productivity 
overall given only small projected increases in 
precipitation (Charney et al. 2016). Reduced 
snowpack and earlier snowmelt (see Water 
chapter) may further limit any potential 
gains in productivity. In general, changes 
in temperature, precipitation, and snow 
could alter forest productivity in Montana as 
described below. 

•	 Forest productivity may increase 
in montane, subalpine, and 
alpine areas.—These areas may not 
exceed optimal temperatures, even under 
end-of-century projections, and these 
high-elevation areas should have sufficient 
moisture with increased winter and spring 
precipitation and longer snowpack duration, 
allowing growing seasons to lengthen and 
forests to benefit from higher atmospheric 
CO2 (Keane et al. forthcoming). Gains in forest 
productivity have already been observed 
in relatively cooler/wetter sites at higher 
elevations and northern range limits in other 
regions (Littell et al. 2008; Bhuta et al. 2009; 
Salzer et al. 2009; D’Orangeville et al. 2016).

•	 Forest productivity may decrease 
in lower elevation, warmer, and 
drier sites.—Conversely, lower elevation 
areas are likely to see more extreme high 
temperatures combined with low soil water 
availability later in the year, resulting in 
reduced productivity. 

Ultimately, shifts in productivity will be site- 
and species-specific and vary across years. 
Above- and below-normal temperature and 
precipitation years associated with natural 
climate oscillations may determine whether 
growing seasons lengthen, contract, or shift 
in time. But even under ideal temperature 
and moisture conditions, productivity gains 
will be dependent on local site conditions, 
such as where there are sufficient soil nutrients 
or where stand density is low and little 
competition exists for available resources (Ford 
et al. 2016). Further, if extreme heat events 
increase substantially, impacts will be negative 
regardless of water availability.
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Mortality and die-off
The expected increase in drought severity 
will increase tree mortality in forests. 
Already, widespread, catastrophic forest 
die-off events throughout the western US 
have been directly or indirectly related to 
drought (Breshears et al. 2005; Allen et al. 
2010; Ganey and Vojta 2011; Worrall et al. 
2013). Multiple researchers have shown that 
extended drought correlates with declining 
tree growth and increased risk of mortality 
(Allen et al. 2010; O’Connor 2013; Williams 
et al. 2013). Similarly, the combination of 
increased warming and drought conditions 
is the likely cause of recent rapid increases 
in background (non-catastrophic) forest 
mortality rates in Montana and the interior 
West (van Mantgem et al. 2009). For trees 
beyond the seedling stage, increased 
temperatures may be responsible for tree 
mortality more so than water stress (Luo 
and Chen 2013), although water stress 
may have been more important historically 
(Rapacciuolo et al. 2014). 

Initial forest conditions affect levels of tree 
mortality from direct climate effects. For 
example, soil type and depth, elevation, 
and aspect all influence water availability 
for forests. Stand condition may also 
increase tree mortality by increasing the 
likelihood of indirect effects (discussed 
below). Stand condition is particularly 
important on state and federal forests 
where a policy of fire suppression for the 
last 100 yr has increased tree density and 
the risk of mortality from defoliating and 
boring insects, and from wildfire. 

Species range shifts and 
forest distribution
Climate conditions and disturbance regimes 
largely control plant distributions (ranges). 
Over the millennia, the main responses 
of species to climate change has been to 
adapt to changing conditions, move to a 
new site (range shift), or go extinct (Davis 
and Shaw 2001). Although many tree 
species in Montana are relatively plastic—
meaning they can adapt in the short term 
to a wide range of climate conditions—this 
plasticity could be challenged by severe 
or prolonged drought or substantially 
modified disturbance regimes (Allen et al. 
2010). Long-term adaptability is determined 
by the genetic diversity of forests and 
individual species (Davis et al. 2005), both 
of which may have been reduced by lack 
of understanding in the past of how forest 
management activities affect forest genetics 
(see Genetics sidebar).

Some evidence exists that tree ranges are 
already shifting to colder locations in the 
Pacific Northwest (Monleon and Lintz 2015). 
However, climatically suitable places are 
often geographically limited, and alpine 
vegetation may be running out of mountain 
as it seeks colder climes (Gottfried et al. 
2012). To complicate matters, the optimum 
elevations for some plant species are 
shifting downhill tracking changes in water 
availability, as opposed to simply moving 
uphill, tracking changes in temperature 
(Crimmins et al. 2011). Divergence in the 
direction between optimal temperature 
and moisture conditions may make it 
difficult for trees to stay in equilibrium 
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	 The Importance of Genetic Diversity 

	 Forest genetics—the genetic variation and inheritance of various 
genes of forest trees—will primarily determine a forest’s ability to 
adapt to climate change over the long term. Genetic diversity largely 
determines a species’ ability to survive extreme events and adapt to 
changing conditions (Ledig and Kitzmiller 1992). Historically, the high 
genetic diversity of many tree species allowed forests to tolerate a 
wide range of environmental conditions and adapt to shifts in climate 
(Westfall and Millar 2004; Nicotra et al. 2015). 

	 However, it is unclear whether species with even high levels of 
genetic and physical diversity can adapt fast enough to the rapid and 
extreme shifts in climate that are projected over the next century 
(Vose et al. 2012). 

	 Human actions have undoubtedly altered forest genetics, at least in part 
through silvicultural practices. Because physical characteristics (e.g., tree 
height or basal diameter) are used to select trees for harvest, silvicultural 
practices can alter forest genetics, which are the bases for these physical 
differences. Selective harvesting may have substantially altered the 
presence of rare genetic characteristics (Cheliak et al. 1988; Schaberg et 
al. 2008), which are often those needed by a species to adapt to climate 
change. 

	 Even though data regarding trends in forest genetic diversity are scarce, 
a general consensus exists that natural genetic diversity may be at risk 
globally as a result of human activities (Schueler et al. 2012; Alfaro et al. 
2014; FAO 2014). Managing forests to retain or increase this diversity is 
one of the best options for conservation.
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	 Feedbacks 

	 Forest responses to climate change may be 
complex due to feedbacks, which are the 
interplay between different climate change-
related effects. One effect may amplify or 
diminish another effect, and that interaction 
has the potential to result in changes that are 
non-linear, unpredictable, and even dramatic. 

	 For forests, a notable challenge will be 
understanding and preparing for interactions 
in disturbances (Buma 2015). For example, 
if a fire burns a forest, it will release stored 
carbon. If many fires burn globally, there 
will be an increase in atmospheric CO2 , 
the main driver of climate change. Further, 
more fires would mean fewer trees and that 
could mean that less water vapor transpired 
into the air, resulting in drier conditions. 
Drier and warmer conditions would lead 
to more fires—a positive feedback loop 
where changes are amplified. In a negative 
feedback loop, changes are diminished or 
reach a steady state. For example, increased 
atmospheric CO2 may increase forest 
productivity. More trees would sequester 
more atmospheric CO2 , thereby reducing 
atmospheric CO2 and dampening the initial 
CO2 fertilization effect.

	

with favorable climate 
conditions (Dobrowski 
et al. 2013). Regardless 
of direction of range 
shift, there is concern 
whether tree species can 
disperse and regenerate 
quickly enough to keep 
pace with the magnitude 
and rate of projected 
climate changes (Zhu 
et al. 2012). Although 
dynamic vegetation 
models tend to predict 
an overall expansion 
of cool forests and 
woodlands (Shafer et al. 
2015), some tree species 
may actually experience 
reduced ranges due to 
geographical obstacles 
to range expansion in 
response to climate 
(Coops and Waring 
2001). Current best 
global estimates suggest 
that forest mortality 
is outpacing benefits 
from increased tree 
productivity due to 
increased atmospheric 
CO2 (Allen et al. 2010), 
signifying an overarching 
contraction of forest 
range (Dobrowski et  
al. 2015).
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Feedbacks may occur between resources as well, for example, between 
forests and water quantity. The feedbacks are not always as assumed. For 
example, forest die-off caused by drought has, in some areas, been shown 
to reduce streamflow as opposed to increasing it, as might seem more 
intuitive (Guardiola-Claramonte et al. 2011). 

	 Even where ecologists recognize a feedback, they often do not understand 
all the connections or even if the interplay between components leads to 
positive or negative outcomes. It is also likely that many feedbacks exist 
that are currently unknown. Regardless, scientists believe that feedbacks 
are likely to increase the ecosystem impact of individual disturbances, 
which may have substantial implications for changes in distribution and 
heterogeneity of forests in the future (Bonan 2008; Vose et al. 2012; 
Richardson et al. 2013).

A simplified example of the feedbacks between wildfire and climate (adapted from 
Vose et al. 2016). 
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INDIRECT EFFECTS OF CLIMATE 
CHANGE ON FORESTS

Key Messages

•	An increase in fire risk (i.e., probability of occurrence)—including an increase 
in size and possible frequency and/or severity (i.e., tree mortality)—is 
expected in the coming century as a result of a) prolonged fire seasons 
due to increased temperatures, and b) increased fuel loads from past fire 
suppression. Spatial patterns of fire activity will be complex and dependent 
on disturbance history and current stand condition. Fire risk may increase in 
all forests; fire severity may increase the most in lower elevation forests. [high 
agreement, robust evidence]

•	Rising temperatures are likely to increase bark beetle survival [high 
agreement, strong evidence], but climate-induced changes to other insects 
and forest pathogens are more varied and less certain [medium agreement, 
moderate evidence]. Climate change effects are difficult to forecast because 
of the interplay between climate-driven changes in insect or pathogen 
behavior and changes in host tree susceptibility.

•	There may be a reduction in the amount of carbon stored in forests. Rising 
temperatures and increased atmospheric CO2 can increase forest productivity 
and thus the carbon stored in organic matter. However, warmer temperatures 
can also reduce soil carbon through increased decomposition rates. Overall, 
increased tree mortality from increased forest disturbance may cause a 
reduction in forest carbon storage. [low agreement, limited evidence]
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The direct effects of increasing temperature and precipitation may result in the expansion and/or 
contraction of certain forest types in certain regions of Montana. However, the indirect effects of 
climate change on forests, such as changing wildfire and beetle outbreak severity, are already having 
a large impact on the health of Montana’s forests and in some instances these impacts are easier to 
predict. These direct and indirect impacts of climate on forests may be exacerbated or ameliorated 
by human land-use activities in the past and moving forward.

Our scientific understanding of disturbance associated with extreme weather events limits our ability 
to project landslides, blow downs, ice storms, and other such events in the future. In this section, we 
will consider the impact of changes in fire, insect, and pathogen outbreaks on forests, as well as on 
soil and carbon storage, for which we have better capacity for forecasting (Table 4-4).

Table 4-4. Summary of potential climate-related indirect effects to forests.
Indirect effect Possible impacts Projected net effect
Disturbance: fire Positive: Increased forest heterogeneity (long-

term, post-burn)

Negative: Decreased forest diversity and 
heterogeneity (immediately post-burn); increased 
social and economic impacts from fire; increased 
release of forest carbon

Increased fire severity 
resulting primarily from 
warmer weather and past 
fire suppression; increased 
release of forest carbon  
from fire

Disturbance: 
pathogens

Positive: Some pathogen species may decline 
and result in decreased forest mortality

Negative: Some pathogens species may increase 
and result in increased forest mortality and 
increased susceptibility to beetle attack

Uncertain climate effects on 
pathogens, dependent on 
moisture regimes, pathogen 
species, and host species

Disturbance: 
insects

Negative: Increased forest mortality; reduced 
forest diversity with shift towards non-host tree 
species

Increased temperatures likely 
to result in increased insect 
disturbance, but dependent 
on elevation, insect species 
and host availability

Soil responses 
and carbon 
storage

Positive: Increased organic matter if increased 
productivity; increased nitrogen availability

Negative: Decreased organic matter (with 
increased decomposition rates); decreased 
mycorrhizal support; increased soil acidity; 
increased release, or decreased removal, of 
atmospheric CO2

Uncertain climate effects on 
soil responses, but projected 
reductions in soil and forest 
carbon storage
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Disturbance resulting from fire
Fire is a critical component of forest dynamics; it has historically been the dominant disturbance in 
forest ecosystems in the West (Baker 2009; Marlon et al. 2012). Fire regimes are characterized by 
interactive relationships, across temporal and spatial scales, between climate and weather, vegetation 
and fuels, and ignition sources and topography (Parisien and Moritz 2009). Fires have burned frequently 
and widely across Montana (Figure 4-4), but the area burned and the severity of fire, often measured 
by reduction in biomass or tree mortality, has varied across the state. For example, from 2003-2012, 
fire severity was greatest along the eastern border and southern portion of the northwestern climate 
division (Figure 4-5) (Berner et al. forthcoming).

Figure 4-4. Extent and location of historical and recent fires in Montana, 1889-2013. Historical data (1889-1991) are mapped 
as actual fire boundary polygons as available. Recent data (1992-2013) are mapped as circles approximating burned area. 
Recent fires too small to be seen by area are mapped as points. Forests are shown in green. Fire data represent primarily 
forest fires, but may include grassland and other fire types. Brown boundaries delineate climate division. Data and map 
from Hoff (forthcoming).

Historical and Recent Fires in Montana
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Broadly, seasonal average temperature and precipitation patterns limit both the length of the 
fire season and environmental conditions during the fire season. Over the long term, climate also 
determines the distribution of vegetation and possible fuels (Power et al. 2007; Marlon et al. 2008).  
Fire occurrence increases during hotter, drier conditions (called fire weather) (Flannigan and Harrington 
1988). Thus, the fire season in Montana typically extends from late June through October at lower 
elevations, with shorter seasons at higher elevations where snowpack can persist into July (Keane et 
al. forthcoming). Variation in fire regimes in the West have historically been associated with climate 
oscillations (Heyerdahl et al. 2002). In Montana, increased fire frequency is associated with warmer 
spring temperatures and drier summer conditions (Heyerdahl et al. 2008; Morgan et al. 2008), often 
associated with El Niño. The phase of the Pacific Decadal Oscillation that leads to warmer conditions 
may also prolong and intensify the fire season (Heyerdahl et al. 2008; Jolly et al. 2015; Abatzoglou and 
Williams 2016), and it is clear that years with protracted or widespread wildland fire or increased fire 

Figure 4-5. Fire severity (measured as total carbon stored in aboveground tissues killed by fire) estimated for 2003-2012,  
a relatively dry decade. Adapted from Berner et al. (forthcoming).

Fire Severity
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severity are correlated with drought (Littell et al. 2009; van Mantgem et al. 2013). Warmer, drier climate 
phases can particularly increase fire risk when they follow cooler, wetter conditions that increase fire fuel 
availability via increased vegetation growth and reduced fire activity (Heyerdahl et al. 2008). Topography 
can also influence fire behavior by determining local microclimates—for example, variations in local 
snowpack, temperature, and humidity (Holden and Jolly 2011)—or alignment with prevailing winds 
(Sharples 2009) which increase fire spread.

Figure 4-6. Number of fires in Montana, 1970-2015, by month of occurrence (NIFC undated).

Fires in Montana, 1970-2015

Across Montana, conditions that lead to high fire risk (i.e., likelihood of occurrence) are becoming more 
common: seasonal maximum temperatures are increasing, snowmelt is occurring earlier, minimum 
relative humidities are decreasing, and fuels are becoming drier (Jolly et al. 2015; Seager et al. 2015). 
Combined, these factors have led to the fire season lengthening globally between 1979 and 2013 (Jolly 
et al. 2015). In addition, across the western US, fuel loads and tree densities have increased as a result 
of fire suppression practices beginning in the 1920s (Parks et al. 2015), as well as other land uses, such 
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as timber harvest and grazing (Allen et al. 2002; Swetnam and Betancourt 2010). As a result, it is clear 
that climate change, combined with greater fuel loads, has increased western fire activity over the past 
30 yr (Westerling et al. 2006; Miller et al. 2008; Dennison et al. 2014; Abatzoglou and Williams 2016). 

Combined with fuel loads, higher evapotranspiration rates and resulting shifts in water balance may be 
the best predictor of increased fire risk and fire severity in the future under a changing climate (Littell 
and Gwozdz 2011; Abatzoglou and Kolden 2013). Yet, climate change effects on overall water balance 
are uncertain. Rising temperatures should increase evapotranspiration, but plants may adapt by 
reducing water lost to transpiration. Additionally, vegetation patterns and forest connectivity, and the 
feedback between these and fire, play an important role in how climate-driven changes in fire regimes 
are likely to play out over the long term (McKenzie and Littell 2017). 

Although fire modeling is complex and models specific to Montana climate divisions are unavailable, 
recent studies suggest likely trends for the state. McKenzie and Littell (2017) project that water 
balance deficits will increase, likely leading to increased area burned. Jolly et al. (2015) project that 
warmer summers and reduced moisture will also continue to lengthen fire seasons. Modeling work 
by Schoennagel et al (2004) and Rocca et al (2014) for the Rocky Mountains projects changes in 
fire frequency (assumed by the authors to be related to the long-term increase in probability of fire 
occurrence) and severity in western Montana. Those changes, for broad forest-type categories over the 
short and long terms, are shown in Table 4-5. These projections likely are generally applicable to other 
parts of Montana, as well.

Table 4-5. Potential changes in fire regimes under a changing Montana climate, with greater 
certainty in short-term, versus long-term, changes.
Forest type Short-term impact Long-term impact
In lower montane forests, primarily 
consisting of ponderosa pine, 
co-dominated by Douglas-fir or 
western larch

Increased fire weather could 
lead to short term increased 
fire frequency and fire 
severity, particularly where 
fire suppression efforts have 
increased fuel loads 

Reduced fire frequency and 
increased fire severity in the 
long-term.

In cooler and wetter upper 
montane forests

Increased fire frequency and 
severity

Increased fire frequency but 
uncertain implications for 
changes in fire severity

Subalpine forests, dominated by 
Engelmann spruce and subalpine 
fir species or by lodgepole 
pine mixed with limber pine or 
whitebark pine in drier sites

Increased fire frequency with 
no change in fire severity

Increased fire frequency with no 
change in fire severity
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Disturbance resulting from 
pathogens and insects
Dale et al. (2001) estimated that impacts from 
forest pathogens and insects result in greater 
economic costs to US forests than any other 
type of disturbance. Pathogens include fungal, 
bacterial, and viral infections, as well as parasitic 
plants (and here we include general forest 
disease in our definition of forest pathology). 
Pathogens can affect different parts of a 
tree, such as trunk and branch cankers, root 
pathogens, and foliar (leaf or needle) diseases.

Many of these insects and pathogen species 
are native to Montana’s forests. For example, 
mountain pine beetle (Dendroctonus 
ponderosae), Douglas-fir beetle (Dendroctonus 
pseudotsugae), and the western spruce budworm 
(Choristoneura occidentalis; a defoliator) are 
important in determining forest distribution, 
structure, and regeneration. Although these 
native insects are unlikely to annihilate their host 
species, recent extreme outbreaks have severely 
impacted some western forests. Non-native 
species, conversely, have the ability to eradicate 
their host species locally. For example, white pine 
blister rust, caused by the fungus (Cronartium 
ribicola), has put western white pine, limber pine, 
and whitebark pine in some areas of Montana in 
jeopardy (Smith et al. 2008). 

Using aircraft, the US Forest Service has 
conducted insect and disease detection surveys 
for over 50 yr (USFS 2016). Nearly 14 million 
forested acres (5.7 million ha) in Montana showed 
visual signs of disease or insect disturbance 
between 2000-2015 (Figure 4-7), and that number 
is assumed to be conservative. Bark beetles 
and defoliators have been the primary cause 

of biotic disturbance as identified from aerial 
surveys (Figure 4-8). Based on other, non-visual, 
approaches to estimate risk from pathogens and 
insects, root disease appears to be another major 
threat to Montana’s forests (Krist et al. 2014).

Climate change can influence forest pathogens 
and insects through three primary mechanisms: 
1) altering pathogen or insect abundance and 
distribution via physiological effects; 2) altering 
tree defenses; and 3) altering interactions 
between pathogens, insects, and their 
competitors (Weed et al. 2013). In addition, 
climate change can alter the distribution and 
presence of host species. 

The interplay between these mechanisms 
complicates efforts to forecast the potential 
effects of climate change on pathogens and 
insects. Soil water deficits, from increased 
temperatures and reduced precipitation, can 
result in larger pathogen populations and lower 
tree and forest defenses against pathogens 
(Lorio 1993; Chakraborty et al. 2008). Many 
pathogens tolerate greater water stress than the 
trees they infect, and some fungi that commonly 
occur in or on trees become pathogenic when 
a tree is water stressed (Desprez-Loustau et 
al. 2006). Beetle activity is also strongly tied to 
climate, and warmer temperatures speed up 
reproduction times, extend growth periods, and 
increase probability of beetle survival (Mitton and 
Ferrenberg 2012; Bentz and Jönsson 2015; Bentz 
et al. 2016). Further, trees stressed by drought are 
more susceptible to beetle invasions (Creeden 
et al. 2014). Field studies suggest that recent 
mountain pine beetle outbreaks correlate with 
mean August temperatures >59°F (15°C) and that 
outbreak size is correlated with minimum winter 
temperatures and drought conditions in previous 
years (Preisler et al. 2012). 
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Forest Disturbance

Figure 4-7. Recent Montana forest disturbance as visually estimated from aerial surveys in 2000-2015 (USFS 2016). Forests 
are shown in green. Darker gray background represents area surveyed in 2015; not all areas were surveyed in all years and 
many pathogens cannot be visually estimated. Brown boundaries delineate climate divisions.

Forest Disturbance

Figure 4-8. Forest disturbance in Montana from 2000-2015 by type of visually surveyed pathogen or insect as percentage 
of the total area surveyed from USFS (2016) Aerial Detection Survey data.
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Projections of continued forest mortality from pathogens and insects suggest that substantial portions 
of western Montana are at high risk regardless of climate change (Figure 4-9) (Krist et al. 2014). Krist et 
al. (2014) suggest that expected climate changes would increase pathogen and insect risks to forests 
beyond those mapped in Figure 4-9 or, at a minimum, alter the spatial patterns of risk. 

Changes in pathogen activity may be most strongly linked to shifts in precipitation patterns and 
moisture availability. For example, Sturrock et al. (2011) estimate that a) Dothistroma needle blight 
(Dothistroma septosporum or D. pini), whose primary host in Montana is ponderosa pine, will have 
reduced or increased impacts, depending on warmer and drier or wetter conditions, respectively; and 
b) Armillaria root disease (Armillaria spp.), which generally affects Douglas-fir and grand fir, will have 
increased impacts under warmer, drier conditions, but no change under warmer, wetter conditions. 
Sturrock et al. (2011) also state that the implications of climate change for white pine blister rust are 
uncertain, but suggest decreased impacts under a warmer, drier climate, and no change under warmer, 
wetter conditions because infections require both moist and cool environments.

Figure 4-9. Forested areas (green) at high risk of mortality (red) from combined insect and pathogen attacks from the 
National Insect and Disease Risk Map (Krist et al. 2014). This map does not consider increased risks from projected climate 
changes. Areas in red are locations where it is estimated that 25% or more of live trees with a diameter of greater than 1 
inch (2.5 cm) are at risk of mortality by 2027 from insects and disease. 

Forested Areas at High Mortality Risk



2017 MONTANA CLIMATE ASSESSMENT  |  179

It appears more certain that a warming climate will increase insect-related forest mortality, depending 
on the presence of susceptible host trees. Already, warming temperatures have expanded the range 
of beetles (Carroll et al. 2006), and the largest recorded bark beetle epidemic in western forests has 
occurred in the past 15 yr. Higher temperatures, if large enough, lead to more severe droughts as water 
is more rapidly and completely evaporated from soils and streams, which may in turn make forests more 
susceptible to western spruce budworm outbreaks (Régnière et al. 2010; Flower et al. 2014). 

	 Future of the Mountain Pine Beetle in Montana 

	 The mountain pine beetle (Dendroctonus ponderosae) epidemic is 
currently on the wane in Montana because of the reduction of susceptible 
host trees. We project, however, that rising winter temperatures will result 
in increased mountain pine beetle populations. Those increases will result 
from fewer cold snaps, and hence substantially decreased likelihood of 
seasonal mountain pine beetle die-off. 

	 We came to that conclusion using field data from Idaho (Régnière 
and Bentz 2007)—to assess threshold cold temperatures by month 
(beetles adapt to colder temperature as the winter progresses) 
that cause approximately 50% mortality in mountain pine beetle 
populations—combined with projected future air temperatures. For 
air temperatures, we used four climate scenarios, as described in the 
Climate chapter, and projected the number of days that are likely to 
exceed those threshold winter temperatures in the future. Higher 
winter temperatures, then, equate to reduced winter die-off (i.e., 
larger populations) of mountain pine beetles. 

	 The figure below shows that for all four temperature scenarios studied 
in this assessment, warm winter days, above the temperature threshold 
necessary to kill about half of the mountain pine beetles, will occur more 
frequently. In other words, warming winter temperatures are projected to 
increase mountain pine beetle survival.
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	 Our assessment did not show substantial differences across elevations (we 
considered low, moderate, and high elevations for known pine locations), 
but other studies have (Hicke et al. 2006; Raffa et al. 2013; Bentz et al. 
2016). All insects have different survival strategies and climate tolerances, 
and even the mountain pine beetle, about which much is known, has a 
very complex life history (Bentz and Mullins 1999). Thus, impacts could 
be greater than would be indicated by only considering warmer winter 
temperatures (Buotte et al. 2016). However, the mountain pine beetle 
provides a good example of how potential changes in temperature may 
impact insect species that disturb Montana forests.

(right) Mountain pine beetle (Dendroctonus ponderosae). 
(above) Percent increase in number of days per month 
exceeding the threshold cold temperatures necessary to 
cause approximately 50% mortality in mountain pine beetle 
populations as projected under two greenhouse gas emission 
scenarios (i.e., representative concentration pathways; see 
Climate chapter) at mid century and end-of-century.
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Soil responses, nutrient cycling, and carbon storage
Soils that are high in organic matter support forest resources by providing moisture, necessary 
nutrients, and physical support; filtering of toxics and other unwanted compounds; and helpful biota 
such as mycorrhizae, which are a symbiotic relationship between fungi and roots that help a tree absorb 
nutrients and water. Soils high in organic matter also store more carbon. Climate change can affect all 
of these soil functions.22 

Changes in soil temperature and moisture can have substantial impacts to forests, although the 
direction of change and resulting impacts are uncertain. For example:

•	 Soil decomposition rates may increase with high temperatures, reducing the quality and quantity of 
soil organic matter (Keane et al. forthcoming). Similarly, wet soils can increase decomposition rates, 
but it is unknown whether soil moisture will increase or decrease under projected climate changes 
for Montana. Alternatively, increases in forest productivity resulting from increased atmospheric CO2 
can increase litter and soil organic matter. 

•	 Nutrient cycling may be affected by rising temperatures that, in turn, can increase microbial activity. 
This feedback has the potential to increase nitrogen deposition, providing more of a nutrient 
critical to tree growth (Melillo et al. 2011). Warming temperatures can also increase nitrogen export 
(reduction). Recent work by Brookshire et al. (2011) suggests that climate change-driven loss of soil 
nitrogen could outpace deposition by 3 to 1.

•	 More important may be how multiple, climate-related effects interact to impact soil resources. 
For example, increased disturbance from fire or insects could reduce forest canopy shading, 
thereby further compounding the effects of rising air temperature on soil temperatures. Increased 
temperatures and reduced water, happening concurrently, can decrease mycorrhizal colonization of 
tree roots (Compant et al. 2010), exacerbating a tree’s susceptibility to pathogens. 

Carbon storage may also be impacted by climate change. At a global scale, almost 45% of the total 
forest storage of carbon is in soils, with most of the rest (approximately 42%) stored in live woody 
biomass (Bonan 2008; Pan et al. 2011). Global forest carbon storage has been increasing over the past 
50 yr in response to increased nitrogen deposition and atmospheric CO2 concentrations, despite a 
worldwide reduction in forested area (Bellassen and Luyssaert 2014). The same trend is seen in the 
USFS’s Northern Region (northeastern Washington, northern Idaho, and Montana) between 1990-2013, 
although the trend is small and there are substantial differences among forest types (USFS 2015). 

22	 This report focuses on climate change impacts, not mitigation. Still it is important to recognize that forests are a key carbon sink, and 
have the potential to reduce atmospheric CO2 through carbon sequestration (i.e., the removal of carbon from the atmosphere to be 
stored in an alternative form) (Ingerson 2007; Pan et al. 2011). Pan et al. (2011) estimated that forests offset 13% of carbon emissions in 
North America. Birdsey (1992) estimated Rocky Mountain forests make up about 15% of total US forest carbon storage. 
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Researchers debate whether increasing temperatures will increase or decrease carbon storage 
(Davidson and Janssens 2006). With rising temperatures, carbon storage will increase due to increasing 
forest productivity (assuming adequate water and nutrient availability) (Finzi et al. 2006; Norby et al. 
2010; Garten et al. 2011), but decrease due to increasing microbial respiration, which in turn releases 
CO2 from the soil. Changes in disturbance regimes (e.g., increased fire frequency or tree mortality from 
insects) could also result in release of carbon currently stored in forests (Baldocchi 2008; Kurz et al. 2008; 
Loehman et al. 2014). Overall, carbon models suggest that increased fire and bark beetle outbreaks are 
likely to reduce carbon storage in western forests (Metsaranta et al. 2010; Westerling et al. 2011), and 
some research suggests recent steep declines in forest carbon storage in the Rocky Mountains as a 
result of higher rates of disturbance relative to historical values (Wear and Coulston 2015).

ADAPTATION STRATEGIES FOR  
A CHANGING CLIMATE
Managers should consider multiple scenarios of potential climate shifts and contemplate a suite of 
adaptation strategies. Vose et al. (2012) suggest four general types of adaptation options in managing 
forests for the potential impacts of climate change: 

1	 Promote resistance.—Enhance ability of species of system to resist forces of 
climate change;

2	 Increase resilience.—Enhance capacity of system to absorb impact without 
substantial changes to processes and functionality;

3	 Enable ecosystems to respond.—Assist a system’s transition to an altered 
state that is adaptive to a changed climate while minimizing disruptive outcomes; and

4	 Re-align highly altered ecosystems.—Use restoration techniques to allow 
a system’s function to continue through changing climate conditions.

We recommend a bet-hedging approach, understanding the range of potential options and their 
possible consequences, and selecting among those that provide the most likely benefit given future 
uncertainty. We list many potential specific adaptation strategies in Table 4-6. Several guidebooks exist 
for developing adaptation options on forested lands; these include Responding to Climate Change on 
National Forests (Peterson et al. 2011), Climate Change in Forests of the Future (Millar et al. 2007), and 
Forest Adaptation Resources (Swanston et al. 2016). 
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Table 4-6. General adaptation strategies to increase resilience of forests to climate change 
and variability.
Adaptation 
option

Time period Examples (further reading) 

Increase 
genetic and 
phenotypic 
diversity

Mid to long 
term

•	 Breed for climate resilience and disease resistance 

•	 Plant from multiple species, seed sources, and climate zones, 
particularly from locally-adapted sources 

•	 Manage to maintain genetic diversity and phenotypic plasticity

•	 Create opportunities for rapid natural selection for species 
with high predicted potential for adverse impacts from climate 
change

(Sturrock et al. 2011; Erickson et al. 2012; Alfaro et al. 2014; FAO 
2014)

Improve forest 
structure, 
diversity, and 
resilience

Long term •	 Plant various species in microsites (small areas with locally 
variable climate, topographical, and soil conditions) with existing 
species mix as guide

•	 Plant drought tolerant and native species

•	 Retain diversity of species and promote legacy trees 

•	 Manage or restore mosaic (variable pattern of species and ages) 
and maintain or improve landscape connectivity

•	 Plant in asynchronous rotations and manage for diverse age 
classes

•	 Thin, plant, and use prescribed fire to favor species adapted to 
disturbance

(Millar et al. 2007; Vose et al. 2016; Keane et al. forthcoming)

Improve 
establishment

Short to long 
term

•	 Plant drought-tolerant species in years with strong El Niño 
forecasts, particularly during Pacific Decadal Oscillation 
warm phase; plant trees that require sufficient water during 
establishment in La Niña years and during Pacific Decadal 
Oscillation cool phases

•	 Focus planting more in spring as fall planting becomes more 
difficult with reduced soil moisture and test different planting 
timings as springs shift earlier

Improve water 
availability

Long term •	 In snow-dominant locations, reduce canopy cover on north 
slopes (reduce interception of moisture by canopy), retain 
canopy cover on south slopes (increase shading), in all locations 
maintain sufficient shading on south slopes to retain soil 
moisture
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Table 4-6. Continued.
Adaptation 
option

Time period Examples (further reading) 

Improve soil 
quality

Mid to long 
term

•	 Alter timing of logging to reduce soil compaction

•	 Retain woody debris to retain soil moisture and promote nutrient 
cycling

Reduce fire 
risk and fire 
severity

Mid to long 
term

•	 Apply additional efforts for fire prevention in drier, warmer years; 
allow spot burning in cooler, wetter years

•	 Use prescribed fire and thinning to minimize fuel loading and favor 
fire-resistant species

 (Vose et al. 2016; Keane et al. forthcoming)

Manage 
forest 
diseases

Mid to long 
term

•	 Monitor, forecast, and plan regarding forest diseases and use an 
adaptive management framework

•	 Ensure management activities do not spread disease

•	 Breed for increased disease resistance

(Sturrock et al. 2011)

Consider 
assisted 
migration and 
adaptation

Mid to long 
term

•	 Assisted adaptation—often defined as management to assist gene 
flow or selection for specific genetic traits—may be a more useful 
tool than assisted migration whereby a species is deliberately 
moved to a different habitat; carefully consider implications of either 
action

•	 Identify potential climate refugia to focus restoration efforts

•	 Plant a mix of seeds genetically selected and adapted to likely future 
and current conditions

(McLachlan et al. 2007; McKenney et al. 2009; Aitken and Whitlock 2013; 
Alfaro et al. 2014)

Manage 
forest carbon 
(mitigation)

Mid to long 
term

•	 Planting new trees to increase forested area

•	 Increase carbon storage in existing forests (e.g., replace dying 
stands, manage for maximum productivity and reduced fire risk via 
pre-commercial thinning23)

•	 Use of wood as biomass energy

(McKinley et al. 2011; Bellassen and Luyssaert 2014)

23	 New research indicates that there is not a trade-off between managing for productivity and carbon storage; stands managed with early 
(prior to onset of canopy closure and intense competition), pre-commercial thinning had lower densities, larger trees, greater structural 
complexity, and stored as much aboveground carbon as un-thinned stands (Schaedel et al. 2017).
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KEY KNOWLEDGE GAPS
Many knowledge gaps still need to be filled to better understand and prepare Montana’s forests 
to survive and thrive under a changing climate. We detail 12 key needs below to achieve better 
understanding of direct effects, indirect effects, and general effects.

•	 Better understanding of direct climate effects.—1) Improved understanding of 
adaptive genetic and phenotypic forest characteristics that would provide better guidance for 
breeding programs and management actions to maximize resilience to both direct and indirect 
climate impacts to forests; 2) Long-term studies to better understand effects of CO2 fertilization in 
Montana’s forests; 3) Improved models of climate and vegetation effects on evapotranspiration and 
water balances throughout forested systems.

•	 Better understanding of indirect climate effects.—4) Improved fire models and 
projections directly related to Montana’s forests; 5) Long-term monitoring of forest insect and 
pathogen response to recent climate changes and improved projections of likely future impacts; 6) 
Better understanding of disturbance effects on microclimates and refugia and implications for forest 
productivity, mortality, and adaptation.

•	 Better understanding of general effects and adaptation options.—7) Forest 
models for Montana that account for changes in both climate and resulting vegetation distribution 
and patterns; 8) Models that account for interactions and feedbacks in climate-related impacts to 
forests (e.g., changes in mortality from both direct increases in warming and increased fire risk as 
a result of warming); 9) Systems thinking and modeling regarding climate effects on understory 
vegetation and interactions with forest trees; 10) Discussion of climate effects on urban forests 
and impacts to cityscapes and livability; 11) Monitoring and time-series data to inform adaptive 
management efforts (i.e., to determine outcome of a management action and, based on that 
outcome, chart future course of action); 12) Detailed decision support systems to provide guidance 
for managing for adaptation.

CONCLUSIONS
Much is known regarding how forest ecosystems will respond to climate change, even amid the 
uncertainties. Two conclusions can be made with high confidence: 

•	 Rising temperatures and shifts in precipitation and moisture balance of forests are likely to 
increase negative direct effects on forests, particularly in water-limited systems and in years with 
low precipitation. 

•	 In some regions, indirect effects of climate, due primarily to increased frequency and severity of 
wildfire and beetle outbreaks, will have a greater impact than direct climate effects. 
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	 Socio-cultural Concerns 

	 Sacred sites and traditional first foods.—Foods play a vital role in 
physical, mental, and spiritual health of indigenous communities. 
Many tribal communities rely on first foods for sustenance, and 
these foods are equally important to the sustenance of tribal culture. 
In Montana, examples of first foods and plants that are found in 
forests and open woodlands include camas (Camassia quamash), 
purple coneflower (Echinacea angustifolia), chokecherry (Prunus 
virginiana), red raspberry (Rubus idaeus L.), huckleberries (Vaccinium 
spp.), kinnick-kinnick (Arcostaphylos uva-ursi), wood’s rose (Rosa 
woodsii), wild strawberry (Fragaria virginiana), arrowleaf balsamroot 
(Balsamorhiza sagittata), and fireweed (Epilobium angustifolium), in 
addition to deer, elk, and other game. 

	 Climate change may reduce availability of these foods and plants, 
as well as shift gathering sites to locations not under tribal control 
(Voggesser et al. 2013). For example, Holden et al. (2012) showed 
huckleberry and serviceberry (Amelanchier alnifolia) productivity is 
sensitive to climate variation. Forest changes may also impact sacred 
sites. For example, some sacred sites are named after the long-
standing vegetation communities grown in that area; yet many of the 
species may no longer be present under future climates.

By instituting adaptation and mitigation programs, forest managers can act now to lessen the likelihood 
and magnitude of climate change impacts on Montana’s forests. Such programs, best undertaken in an 
adaptive management framework, include, but are not limited to, reducing fire risk; managing forest 
diseases; improving forest establishment; increasing forest carbon storage; improving water availability 
and soil quality; improving forest diversity, structure, and resilience; and increasing genetic and 
phenotypic diversity of forests.
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 	 Native people have harvested camas (Camassia quamash) for millennia as a food source in Montana. Here, 
native youth dig for camas roots as part of the 2011 Northwest Montana Native Youth Conservation Corps. 
Courtesy of US Fish and Wildlife Service. 

	 Timber production and wood industry.—Potential climate change-induced 
impacts to commercial forestry have been reviewed in several places (e.g., 
Kirilenko and Sedjo 2007; Vose et al. 2016; Keane et al. forthcoming), as has 
the status of Montana’s forest products industry (e.g., McIver et al. 2013). In 
summary, potential increases in forest productivity from climate shifts (Lin et 
al. 2010; NPS 2010) could result in increased timber production in Montana 
(Garcia-Gonzalo et al. 2007). However, decreased vigor and increased 
mortality might offset gains in productivity from climate alone (Kirilenko and 
Sedjo 2007; Vose et al. 2016). Increased diseases, insects, and fires could 
also reduce quality of timber, thereby reducing the value (Spittlehouse and 
Stewart 2004; Kirilenko and Sedjo 2007; Gillette et al. 2014).
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